Power-2-X facilities Foulum

Sommerhack 2021

Christian Dannesboe CDBO@topsoe.com (+45) 27 77 99 18

HALDOR TOPSOE

Who am I?

Summery

Chemical Engineer graduated from Aalborg University PhD at Aarhus University with co-supervisor from Topsoe (JBH) Working at Aarhus University Biogas test site since 2015 (Foulum)

Engineer

I like numbers Intrigued by good ideas

Core values

How do we move from theory to practice? Can we verify through analysis? Are results presented fair and just?

I love "pressure testing" challenging and awkward ideas

Christian Dannesboe

Site locations in Denmark

Aarhus University - Foulum Campus

National facility for agricultural research

- 90 ha of JB4 fields under crop
- Equipment development
- Emmisions testing
- Processing of livestock

Biorefinery Group of AU

- Biogas production
- Biogas upgrading (BioSNG)
- Continuous HTL plant
- Protein extraction

Upcomming

- PV farm
- Energy conversion
- Energy storage

700 employees on site, 400 scientists/Ph. D./Post Doc.

The challenge of today!

Not every day is windy...

How do we ensure a sustainable supply of energy?

Can we store surplus production in batteries?

Energy storage, what scale is required?

The Hornsdale Power Reserve. A capacity of 129 MWh installed in Australia by Tesla.

https://www.theguardian.com/australia-news/2017/dec/01/south-australia-turns-on-teslas-100mwbattery-history-in-the-making

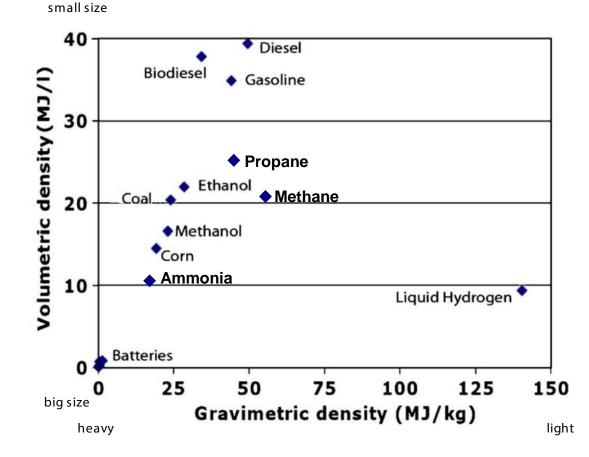
Energy storage

Horns Rev 3 Offshore Wind Farm

Windmills	49	
Туре	Vestas 8 MW	
Production capacity	407 MW	
Yearly production	1'700'000 MWh	

The worlds largest battery-park would be able to store production from Horns Rev 3 for ...

 $\frac{129 \text{ MWh}}{1'700'000 \frac{\text{MWh}}{\text{year}}} = 0,000076 \text{ years} = 40 \text{ min}$


Chemical storage

Fossil fuels have a high volumetric energy density

Fossil fuels enable efficient storage and distribution of energy

Fossil fuel phase-out is both a desire and a challenge

Existing capacity for storage and distribution of fossil fuels will become vacant

HALDOR TOPSØE 🖪

Reference: M. Fischer et al. / Energy Policy 37 (2009) 2639–2641

PART 1

Power-2-Methane

Production of synthetic natural gas

National gas grid

Pipeline grid to distribute natural gas (methane)

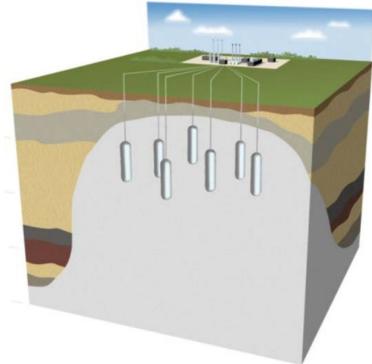
Covers most areas of Denmark

Transmission lines to

- Germany
- Sweden

Two storage facilities

- Lille Torup (salt diaper)
- Stenlille (aquifer)


Gas storage Lille Torup

Conversion of electricity to natural gas would enable:

Lille Torup

Caverns7Width x Height50 m x 250 mTotal capacity450 million Nm³

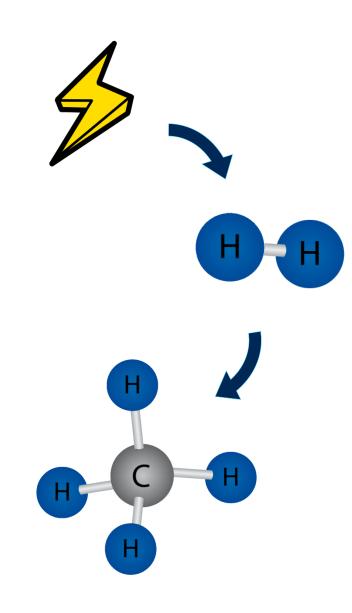
Total energy capacity 45 million MWh

Lille Torup would be able to store production from Horns Rev 3 for ...

 $\frac{45'000'000 \text{ MWh}}{1'700'000 \text{ MWh}} = 26 \text{ years}$

Energistyrelsen, 2011

HALDOR TOPSØE 🖪


https://www.ft.dk/samling/20101/almdel/EPU/bilag/126/946148.pdf

From electricity to natural gas

Storage of electricity as natural gas will require:

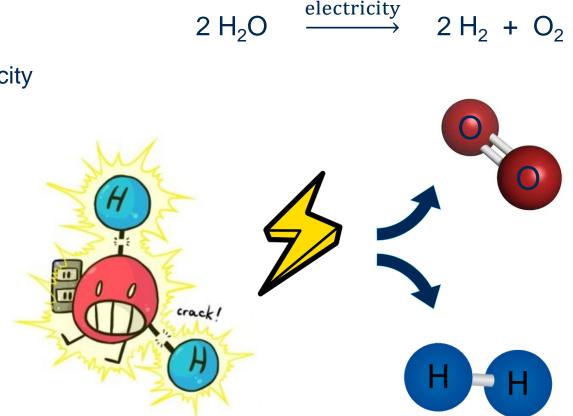
- Conversion from electricity to hydrogen
- Conversion of hydrogen to natural gas
- The gas must be pressurized to allow grid injection

The processes should allow full conversion without any loss.

From electricity to hydrogen

Electrolysis

Enables


• Conversion of water to hydrogen using electricity

Requires

• Electrolysis require water

Challenges

- Hydrogen is expensive to pressurize
- Low volumetric energy density

Technologies for electrolysis

Reference: Renewable Power-to-Gas: A technological and economic review

Renewable Energy Vol 85, Jan. 2016, 1371-1390

Manuel Götz, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, Siegfried Bajohr, Rainer Reimert, Thomas Kolb

Alkaline electrolysis	PEM electrolysis	Solid Oxide electrolysis
Commercial	Commercial	Lab. scale
750 Nm3/h ~2.7 MW	450 Nm3/h ~1.6 MW	-
40 – 90 °C	20 – 100 °C	800 – 1000 °C
1.8 – 2.4 V	1.8 – 2.2 V	0.9 – 1.3 V
5.4 – 8.2 kWh/Nm3	4.9 – 5.2 kWh/Nm3	
4.3 – 5.7 kWh/Nm3	4.1 – 4.8 kWh/Nm3	
Highest capacity Low plant cost Long plant lifetime	No corrosive substance Small plant size High pressure operation	High electrical efficiency Integration of waste heat
Large plant size High maintenance cost	High plant cost Fast degradation	Limited long tern stability Not suited to fluctuations Expensive
	Commercial750 Nm3/h $~2.7$ MW $40 - 90$ °C $1.8 - 2.4$ V $5.4 - 8.2$ kWh/Nm3 $4.3 - 5.7$ kWh/Nm3Highest capacity Low plant cost Long plant lifetimeLarge plant size	CommercialCommercial 750 Nm3/h $~2.7 \text{ MW}$ 450 Nm3/h $~1.6 \text{ MW}$ $40 - 90 ^{\circ}\text{C}$ $20 - 100 ^{\circ}\text{C}$ $1.8 - 2.4 \text{ V}$ $1.8 - 2.2 \text{ V}$ $5.4 - 8.2 \text{ kWh/Nm3}$ $4.9 - 5.2 \text{ kWh/Nm3}$ $4.3 - 5.7 \text{ kWh/Nm3}$ $4.1 - 4.8 \text{ kWh/Nm3}$ Highest capacity Low plant cost Long plant lifetimeNo corrosive substance Small plant size High pressure operationLarge plant sizeHigh plant cost

Lower Heating Value

Hydrogen 3.00 kWh/Nm3

SOEC Technology

Lower Heating Value

Hydrogen 3.00 kW h/Nm3 (242 kJ/mol)

Enables

• Electric conversion efficiency close to 100 %

Requires

• Input is steam not liquid water

Challenges

- Small plants will have a high heat loss
- Thermal stress affects durability of the stack

$$H_2O_{(g)} \rightleftharpoons H_{2(g)} + \frac{1}{2}O_{2(g)} \qquad \Delta H_{split} = 248 \frac{kJ}{mol}$$

$$H_2O_{(l)} \rightleftharpoons H_2O_{(g)} \qquad \Delta H_{vap,300^\circ C} = 41 \frac{kJ}{mol}$$

From hydrogen to Natural gas

Catalytic Methanation

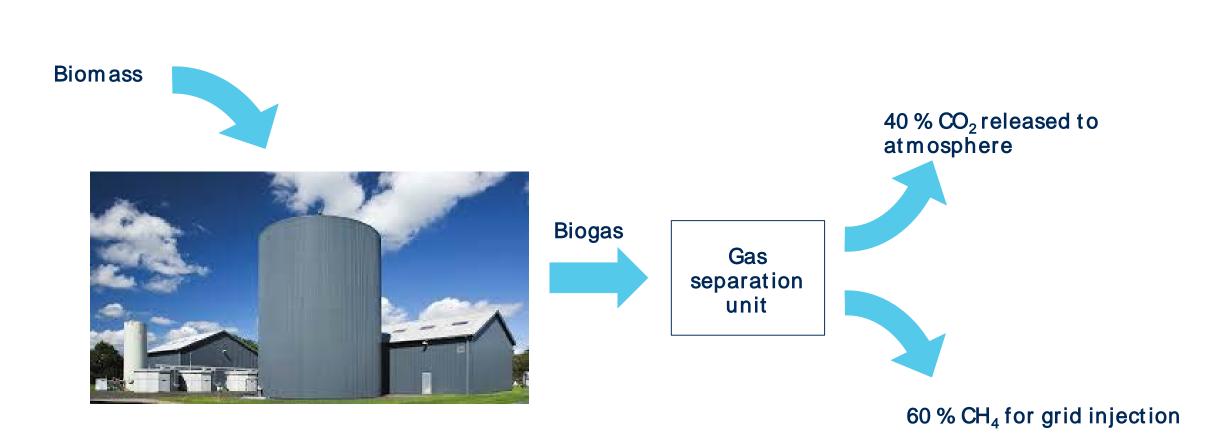
Enables

- The reaction has a high yield
- The reaction releases a lot of heat

Requires

- The reaction requires CO₂
- The reaction requires a catalyst

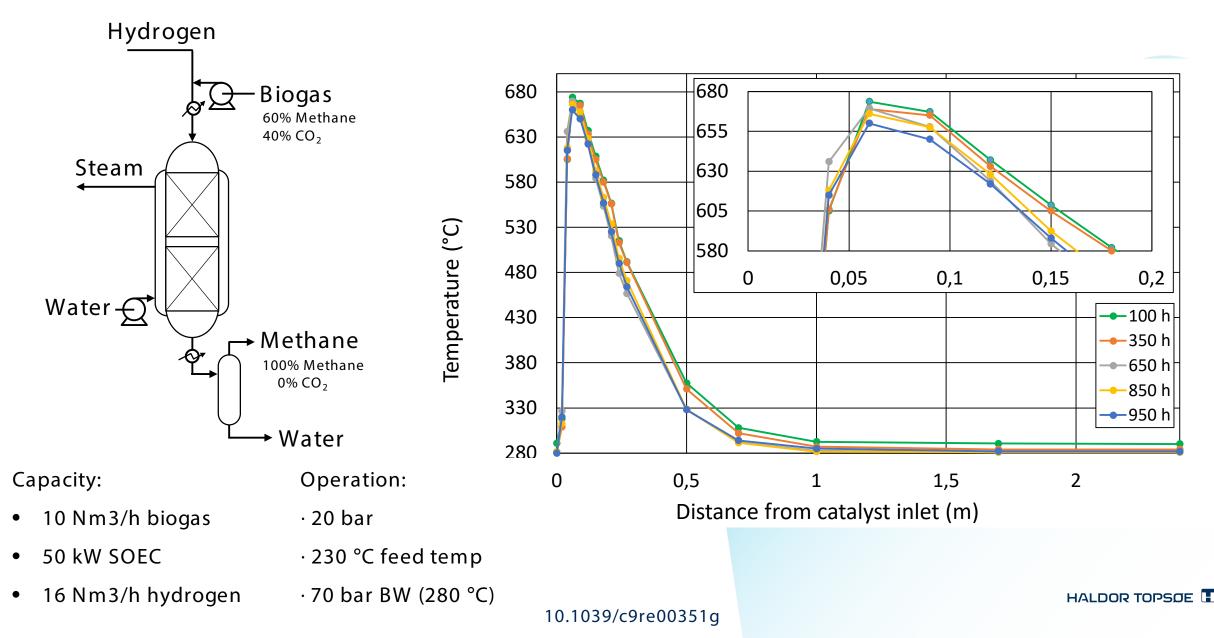
Challenges

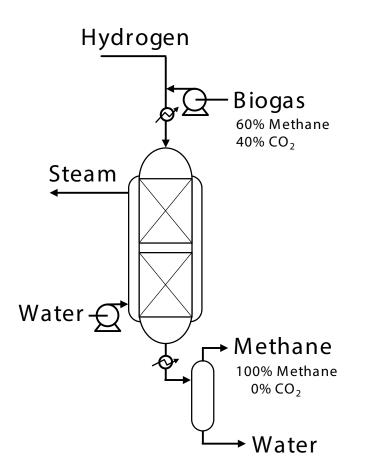

• Efficient heat dissipation is required

$$\frac{1}{4}CO_2 + H_2 \xrightarrow{\text{Ni-kat.}} \frac{1}{4}CH_4 + \frac{1}{2}H_2O$$

$$\Delta H_{300^{\circ}C} = -41\frac{\text{kJ}}{\text{mol}}$$

$$H + H$$


How do we source CO_2 ?


Combined plant

Reactor temperature profile

Quality of the produced gas

	Biogas	Methane	DK Spec.
CO ₂	45.8 %	0.0 %	Max. 2.5 %
Hydrogen	0.0 %	1.4 %	Max. 2.0 %
Methane	53.1 %	97.9 %	Min. 97.2 %
CO	0.0 %	0.0 %	Max. 0.1 %
Nitrogen	1.2 %	1.0 %	Max. 2.8 %
Sum	100.1 %	100.3 %	

Remote operation

Couch Mode

- Plant is fully operational by remote connection
- Critical alarms sent directly via SMS
- Fully remote start and stop confirmed
- Only one operator required to run the entire plant

eSMR Pilot

Ammonia syngas pilot

BioSNG Pilot

Control room

Gas compressors

SOEC Pilot P17

